On Transformations between Belief Spaces

نویسنده

  • Ralph L. Wojtowicz
چکیده

Abstract: Commutative monoids of belief states have been defined by imposing one or more of the usual axioms and employing a combination rule. Familiar operations such as normalization and the Voorbraak map are surjective homomorphisms. The latter, in particular, takes values in a space of Bayesian states. The pignistic map is not a homomorphism between these same spaces. We demonstrate an impact this may have on robust decision making for frames of cardinality at least 3. We adapt the measure zero reflection property of some maps between probability spaces to define a category of belief states having plausibility zero reflecting functions as morphisms. Our definition encapsulates a generalization of the notion of absolute continuity to the context of belief spaces. We show that the Voorbraak map is a functor valued in this category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

A Note on Belief Structures and S-approximation Spaces

We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr('39')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory...

متن کامل

Plato's Cave in the Dempster-Shafer land-the Link between Pignistic and Plausibility Transformations

In reasoning under uncertainty in AI, there are (at least) two useful and different ways of understanding beliefs: the first is as absolute belief or degree of belief in propositions and the second is as belief update or measure of change in belief. Pignistic and plausibility transformations are two wellknown probability transformations that map belief functions to probability functions in the ...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

2: Linear Transformations and Matrices

The general approach to the foundations of mathematics is to study certain spaces, and then to study functions between these spaces. In this course we follow this paradigm. Up until now, we have been studying properties of vector spaces. Vector spaces have a linear structure, and so it is natural to deal with functions between vector spaces that preserve this linear structure. That is, we will ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008